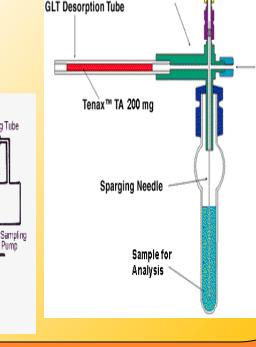

Industrial Area Air Pollution Due to Odor Causing VOCs and Emerging Trends in Odor Measurement

☐ VOCs: emerging pollutants

INDUSTRIAL AREA AIR POLLUTION DUE TO ODOR CAUSING VOCS AND EMERGING TRENDS IN ODOR MEASUREMENT

(14IA086)


ABSTRACT

- Past studies on odor problems from VOCs is limited to a few major VOCs as well as limited techniques
- Industrial effluent, although a major area source of VOCs has been neglected due to non-awareness
- Traditional methods of VOC sampling have not been coupled to their individual odor potential
- Past methods in existence for odor detection have been studied and novel methods for odor detection, have been devised
- An ideal sampling protocol has been established for odor detection and the quantitative concentrations of the VOCs have been coupled to derive their odor potential

METHODS OF SAMPLINGS

- . Air Sampling: USEPA-17A
- 2. Effluent Sampling USEPA-5030B
- 3. Mass Transfer Sampling

CSIR- National Environmental Engineering Research Institute (NEERI), Worli, Mumbai – 400 018, India

Ashiwini B. Zaware- Padalkar, S. Kaur

R. Kumar

OBJECTIVES

- ✓ Devising novel methods for odor detection
- ✓ Establishing ideal sampling protocol for study of odor emissions from effluent treatment plants
- ✓ Deriving methods to couple quantitative measurements with odor values

MAJOR VOCS & ODOR POTENTIALS

INTRODUCTION

□ VOCs: adsorbed on solid adsorbents, BP: 50- 250 °C (Source: WHO)

☐ Past studies on industrial pollution limited to PM, NOx, SOx

☐ Odor pollution from VOCs: novel research area

□ VOCs: high concentrations in industrial areas

No	Compounds	CAS number	Molecular weight (g/mole)	BP (°C)	Odor characteris tics	Odor threshold (ppm)
1	Benzene	71-432	78.11	80.1	Aromatic	4.68
2	Toluene	108-883	92.14	110.6	Pungent	1.6
3	Ethyl benzene	100-414	106.16	136	Aromatic	140
4	Xylene	1330-207	106.17	138.5	Sweetish	1
5	Styrene	100-42-5	104.14	145.2	Sweetish	0.1
6	Acetone	67-641	58.08	56.2	Fruity	62
7	Cumene	98-828	120.2	152	Sharp aromatic	1.2
8	Methanol	67-561	32.04	64.5	Alcoholic	100
9	Butanol	71-363	74.12	117.7	Vinous	1.2
10	Methyl ethyl ketone	78-933	72.12	79.6	Pungent	0.25

TECHNIQUES USED TILL DATE

- ✓ Sensory measurements Direct
 - - ✓ Dynamic olfactometer
 - ✓ Triangular bag method

Indirect

- **✓** Odor intensity assessment
- ✓ Odor threshold determination

✓ Analytical measurements

- ✓USEPA TO-15
- ✓USEPA TO-17

✓ Direct measurements

- ✓ Flux chamber
- ✓ Wind tunnel

LIMITATIONS IN PAST STUDIES

1. Sensory measurements

- **X** Quantification of individual pollutants difficult
- * No standard sampling methodology
- **★** Past methods used highly biased

2. Analytical measurements

- Limited information on combined effect of VOCs on odor
- X Synergistic effect of individual odorants not studied

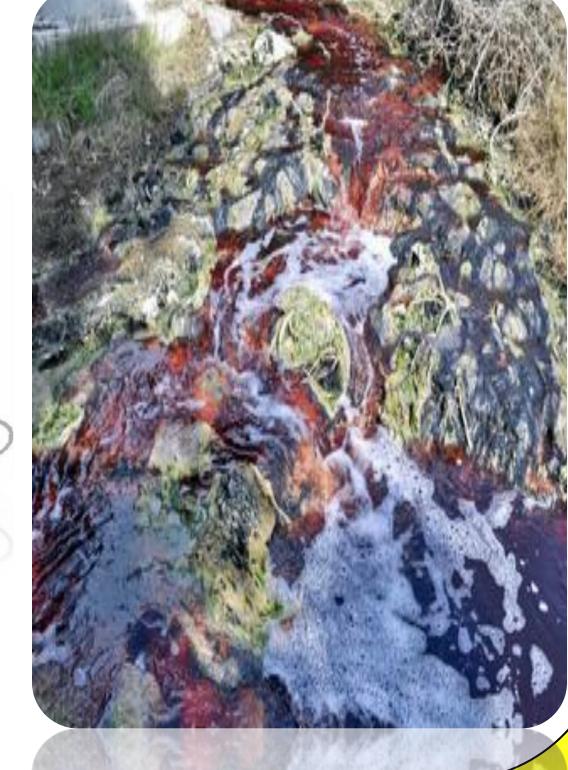
SCOPE OF WORK

- ✓ Study of past sampling protocols for odor assessment
- ✓ Identification of units of concern with respect to their odor generation potential
- ✓ Selection of a representative sampling protocol for each treatment unit
- ✓ Establishing estimation procedures for VOCs from air and effluent
- ✓ Coupling quantitative results of VOCs with odor values

VOCs AND ODOR PROBLEMS

× Physical problems

- > Skin, eye, nose irritation
- > Headache
- > Throat irritation, constriction
- Breathing trouble, suffocation


× Psychological problems

- Odor worry and annoyance
- > Emotional stress, depression
- > Insomnia
- > Loss of appetite

X Aesthetic problems

➤ Affecting tourism

CONCLUSION

- ➤ A unique sampling protocol was established for assessing odors from the sources.
- > Some VOCs with low odor threshold may play a big role in the overall odor formation.
- > The area of quantitative measurements of VOCs was expanded to assess their qualitative characteristics.
- > Need to study more compounds and to establish their odor potential in different environmental conditions

REFERENCES

- 1. Tata P., Witherspoon J, Lue-Hing, C. (2003), VOC Emissions from wastewater treatment plants (Lewis Publishers).
- 2. Blames-Vidal V, Hansen M, Adamsen A, Feilberg A, Peterson S, Jensen B (2009), Characterization of odor released during handling of swine slurry: part 1. Relationship between odorants and perceived odor concentrations, Atm. Env. 43, 2997-3005.
- 3. Ramirez N, Marce M, Borrull F (2011), Determination of volatile organic compounds in industrial wastewater plant air emissions by multi-sorbent adsorption and thermal desorption-gas chromatography-mass spectrometry, Int. J. Env. Anal. Chem, 91, 911-928.
- 4. Nagata Y (2003), Odor Intensity and Odor Threshold Value, Env. Sanit. Centre, Japan, 17-25.