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Particulate Matter (PM10) has been one of the main air pollutants exceeding the ambient standards in most of the major cities in
India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF), PCA–APCS
and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing
effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions.
This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as
residual oil combustion and paved road dust (27%), traffic (20%), coal fired boiler (17%), nitrate (15%). Residential area of Khar
showed sources such as residual oil combustion and construction (25%), motor vehicles (23%), marine aerosol and nitrate (19%),
paved road dust (18%) compared to construction and natural dust (27%), motor vehicles and smelting work (25%), nitrate (16%)
and biomass burning and paved road dust (15%) in Dharavi, a low income slum residential area. The major contributors of PM10

at Colaba were marine aerosol, wood burning and ammonium sulphate (24%), motor vehicles and smelting work (22%), Natural
soil (19%), nitrate and oil burning (18%).

1. Introduction

Urbanization has resulted in high levels of ground level
deterioration of air quality. The investigation of air pollution
in mega cities by Mage et al. [1] showed that the major
problem affecting these cities is their high levels of particulate
matter (PM). PM is composed of a broad class of chemically
and physically diverse substances. It is well established that
high levels of PM are significantly associated with adverse
health effects, ecosystem damage, and degraded visibility [2].
Health effects associated with PM are linked to respiratory,
cardiovascular health problems, and premature mortality
[3, 4].

Receptor modeling is the application of multivariate sta-
tistical methods addressed to the identification and quantita-
tive apportionment of air pollutants to their sources. During
last few years, receptor models have been used effectively for
developing air quality management plans in various cities.
Different models including principal component analy-
sis/absolute principal component scores (PCA-APCS) [5, 6],

edge analysis (UNMIX, [7]), chemical mass balance (CMB)
[8], and positive matrix factorization (PMF) [9] have been
applied by several researchers to identify and establish the
sources contributing to ambient air. UNMIX uses geomet-
rical objects called the edges to identify factors. UNMIX
does not allow individual weighing of data points as does
PMF. Although major factors resolved by PMF and UNMIX
are generally the same, UNMIX does not always resolve as
many factors as PMF [10, 11]. With CMB, the user must
provide source profiles which the model uses to apportion
mass. PMF and CMB have been compared in several stud-
ies. Rizzo and Scheff [12] compared the magnitude of source
contributions resolved by each model and examined correla-
tions between PMF and CMB-resolved contributions. They
found that the major factors correlated well and were similar
in magnitude. Additionally, PMF-resolved source profiles
were generally similar to measured source profiles. Recently,
Callén et al. [13] carried out source apportionment of PM10

in Zaragoza, Spain by three multivariate receptor models
based on factor analysis: PCA-APCS, UNMIX, and PMF.
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Special attention was paid to the models comparison in
order to determine which models were more adequate for the
apportionment. They concluded that greater requirements of
measure of uncertainty in PMF permitted to obtain better
results than with the other two models: PCA-APCS and
UNMIX.

Therefore, in this paper, source apportionment of PM10

has been carried out using PMF technique. The study makes
an attempt to bring out large-scale variability within a city by
identifying different sources. The study was performed in the
city of Mumbai, India with the monitored samples during
April 2007 to March 2008. Mumbai is a coastal city, with
three sides surrounded by sea, harbor, and creek, respectively.
Its climate is highly influenced by sea and land breeze phe-
nomena along with about four months of extended rainy sea-
son between June and September. The city witnesses contri-
bution of air pollution from traffic, industries, re-suspended
dusts due to large-scale construction/demolition, and refuse
burning. Air quality monitoring was carried out in all the
three seasons, namely, summer, postmonsoon, and winter.
Ambient concentration data used in the source-receptor
modeling include PM10 mass, anions and cations, total or-
ganic carbon (OC), elemental carbon (EC), and elements.

2. Sampling and Chemical Analysis

Figure 1 provides the locations of sites within the Mumbai
city, along with the Walter-Liet diagram describing the
climate of the city. Air quality monitoring was carried out
at four sites which included industrial site located at Mahul,
residential area of upper income group at Khar, mixed res-
idential site comprising low-income residential, commercial
and small-scale units along with industrial at Dharavi, and a
background site at Colaba. The first site at Mahul was situ-
ated near the petroleum industry complex Bharat Petroleum
Corporation Limited and Hindusthan Petroleum Corpora-
tion Limited, Indian Oil Blending Ltd. and a chemical fertil-
izer plant RCF. Tata Thermal Power Plant is located in close
proximity of this area. Containers and heavy duty vehicles
ply within this area. The residential site at Khar was second
site located on S.V. Road, a busy road connecting Southern
Mumbai with Western suburbs. This site contributes to the
vehicular traffic in this area. Building construction and dem-
olition activities are common around the Khar site; however,
it does not have any industrial activities. The third site at
Dharavi was within Asia’s largest slum conglomerate having
a population of more than 1 million. About 15 ,000 single-
room factories of small-scale operations mainly glassworks,
leathers, plastic pellets, jewellery, small-scale food processing
industries, welding operations, and so forth are located with-
in this area. Waste created from these activities is burnt in
open area. The fourth site at Colaba represents the “Back-
ground Site” for the study region. It has Arabian Sea on one
side and residential area on the other side. The southern side
is occupied by a military cantonment, including the Navy. No
industrial activities are located in this area except a dock area
that may have direct contribution of air pollutants.

Samples were collected for summer, postmonsoon, and
winter seasons to represent seasonality at each site. In each

season, sampling was carried out continuously for one
month. Ambient concentration data used in the source-re-
ceptor modeling include PM10 mass, anions, cations, total
organic carbon (OC), elemental carbon (EC), and elements.
The analytical methods include gravimetric analysis using a
microbalance, ionic analysis using Ion Chromatograph, trace
metal analysis using ICP-AES, and elemental carbon and
organic carbon analysis using DRI thermal/optical carbon
analyzer.

Ambient air sampling of PM10 at four sites was carried
out using Partisol Model 2300 Speciation Sampler of Rup-
precht and Patashnick Co., USA. The system is designed
to collect samples using four channels simultaneously each
with the set flow rate of 16.7± 0.1 lpm. PM10 Samples were
collected on two different filter media. PM10 mass collection
was carried out with two PTFE ring supported Teflon filters
(size of 47 mm and 1 μ pore size, Schindeler Whatman, USA).
One pure tissue quartz filter (size of 47 mm and 1 μ porosity,
Pall Life Sciences Co. USA) was also used during each day of
sampling per site.

Weighing was carried out on an electromicrobalance
with 1μg sensitivity (Sartorius Model ME 5-F). Unexposed
and exposed Teflon membrane filters were kept in a tem-
perature and humidity-controlled clean room (temperature
20◦C± 3◦C and 40%± 5% RH). Each filter was weighed
in duplicate for getting average weight of exposed and
unexposed filters.

Particle mass collected on tissue quartz paper was ana-
lyzed for OC and EC using Desert Research Institute’s Ther-
mal/Reflectance Optical Carbon Analyzer (model DRI2001,
Protocol Improve A). The analysis is based on liberating car-
bon compounds at different temperatures. During the analy-
sis, correlation coefficient greater than 0.995 was maintained.

For water soluble inorganic ion analysis, PM10 samples
collected on Teflon filters were subjected to ultrasonic extrac-
tion with the help of ultra pure water having the conductivity
about 18Ω. Water extract was then subjected to filtration
using Teflon syringe filter with porosity 0.45 μm and the
samples were ready for analysis. Finally the samples were
analyzed by Ion Chromatograph (Dionex Corporation US
Model ICS3000).

In present study, trace elements were estimated from
PM10 samples collected on Teflon filters using inductive cou-
ple plasma-atomic emission spectroscopy (Model-Horiba
Jobin-Yvon, Ultima 2000). The extraction was performed
by adding aqua regia. National Institute of Standards and
Technology (NIST) traceable certified standards were used
for preparing the calibration standards.

3. Model Description of EPA PMF 3.0

Positive matrix factorization PMF is a powerful multivariate
technique that constraints the solution to be nonnegative
and takes into account the uncertainty of the observed data
[9]. This method relies on the time invariance of the source
profiles and, thus, requires the emission particle size distribu-
tions to be stable in the atmosphere between the sources and
the receptor site. It is reasonable to expect that particle size
distributions will become relatively stable when sampling is
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Figure 1: Air-monitoring stations at Mumbai along with the Walter-Liet diagram.

carried out at some appropriate distance from the emission
sources after initial size distribution changes in the vicinity
of the sources due to coagulation and dry deposition [14].

A speciated data set can be viewed as a data matrix X of
n by m dimensions, in which n is number of samples and m
is chemical species to be measured. The goal of multivariate
receptor modeling is to identify the number of factors p, the

species profile F(p × m) of each source, and the amount of
mass G(n× p) contributed by each factor to each individual
sample.

The model solves the general equation

X = G · F + E, (1)

where E is the residual matrix (observed estimated).
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Table 1: Mean and standard deviations (elemental concentration in μg m−3) of species of four sites of Mumbai.

Mahul Khar Dharavi Colaba

Average Std. dev Average Std. dev Average stdev Average stdev
85 samples 86 samples 83 samples 86 samples

PM10 199.228 83.324 184.930 98.427 230.974 74.980 139.785 75.721

OC 37.111 20.843 36.725 26.855 46.437 22.932 19.875 9.659

EC 9.091 5.971 8.444 6.706 10.065 5.413 6.035 3.845

Cl− 3.312 1.922 4.568 3.194 7.303 4.111 4.053 2.110

SO2−
4 12.679 6.093 13.226 8.309 13.385 5.496 16.846 7.786

NO−
3 2.380 1.838 1.987 1.101 3.917 2.623 2.997 2.110

Na+ 3.165 1.643 3.248 1.918 4.020 2.298 3.014 1.196

NH+
4 5.692 2.951 2.628 1.205 3.961 1.468

K+ 2.196 0.706 2.420 0.618 2.381 1.122 1.799 1.005

Ca2+ 5.676 2.155 6.426 3.645 7.846 2.679 6.582 5.957

Al 0.310 0.212 0.270 0.194 0.277 0.191 0.155 0.147

Ba 0.165 0.333 0.143 0.107 0.146 0.112 0.057 0.063

Cd 0.019 0.019 0.015 0.010 0.012 0.010

Cr 0.060 0.041 0.069 0.062 0.051 0.045 0.041 0.069

Cu 0.159 0.116 0.157 0.118 0.190 0.135 0.070 0.052

Fe 13.020 9.445 11.407 7.765 11.764 8.472 7.247 6.556

In 1.533 1.233 1.396 1.040 1.658 1.202 0.635 0.580

Mg 2.883 1.333 2.422 1.394 3.330 1.730 2.313 3.723

Mn 0.318 0.220 0.277 0.200 0.284 0.196 0.158 0.152

Ni 0.064 0.041 0.061 0.026 0.052 0.039 0.087 0.049

Pb 1.804 1.390 0.107 0.043 1.100 0.772 0.677 0.588

Se 0.053 0.035 0.979 0.591 0.023 0.024

Si 0.831 0.808 0.609 0.676 0.931 1.509 1.030 0.975

Sr 0.055 0.028 0.058 0.035 0.076 0.044 0.048 0.068

Ti 0.552 0.352 0.397 0.291 0.423 0.321 0.215 0.135

V 0.060 0.045 0.027 0.011 0.046 0.055

Zn 1.857 1.512 1.595 1.243 1.759 1.362 0.779 0.693

Equation (1) can also be expressed in the element form
as

xi j =
p∑

k=1

gik fk j + ei j , (2)

where, xi j is the jth elemental concentration measured in the
ith sample, matrix gik is the fraction of total PM10 concentra-
tion from source k in sample i, fk j is the gravimetric mass of
each element j per unit PM mass emitted from each source k,
and ei j is the residual for each sample/species. The objective
is to find G and F by minimizing the residual error E. Further
the elements of F and G are constrained to be nonnegative.
For this a weighted least square approach is used. It involves
minimization of an objective function Q, given as

minimize Q =
n∑

i=1

m∑

j=1

e2
i j

s2
i j

(3)

subject to gik ≥ 0, fk j ≥ 0, (4)

where si j is an uncertainty estimate in the jth species mea-
sured in the ith sample. The solution of (3) is obtained using
an iterative minimization algorithm. Multilinear engine

(ME-2) is the underlying program used to solve the PMF
3.0 problem in the program EPA PMF. ME-2 performs the
iterations via the conjugate gradient algorithm until conver-
gence to a minimum Q value. The minimum Q may be global
or local. A user has to determine the global minimum by us-
ing different starting points for the iterative process and com-
paring the minimum Q value reached. The differences in
ME-2 and PMF2 have been examined by several researchers
by the application of each model to the same data set. Overall,
the studies showed similar results for the major components,
but a greater uncertainty in the PMF2 results [15] and better
source separation using ME-2 [16].

3.1. Uncertainty Calculation. Several researchers [17–19]
have estimated uncertainties in the measurement dataset us-
ing analytical uncertainty si j and adding 1/3rd of the method
detection limit (DLi j) to it as

Uncertainty σi j = si j +
DLi j

3
. (5)

Analytical uncertainty si j is calculated as a function of con-
centration

si j = σB + MσREL, (6)
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where σB is standard deviation of laboratory blanks in mi-
crograms, and M is analytical mass (micrograms/filter). Rel-
ative uncertainty multiplier σREL is used to account for flow/
volume variability and handling artifacts such as variability
in temperature and humidity while transport from field to
laboratory. RTI [20] suggests the use of σREL of 5% of
concentration for all analytes and all instruments. Equations
(5) and (6) were used here for anions, cations and elements.
Method detection limits (MDLs) are based on analytical
replicates (usually blanks) and do not include a component
of field variability. The MDL values are taken as 3 σ values
although the method of determining MDL varies with the
analysis method. MDLs do not take into account any bias
that may be present.

When the measured sum of chemical species is not close
to measured PM, the PM time series would provide addi-
tional information to PMF model. Hence in such cases, PM is
included as an explicit species with a large uncertainty of four
times the concentration [10, 21]. In this study, mass balance
closure was tested by comparing the measurements of grav-
imetric mass and sum of chemical species. Gravimetric PM
mass was higher than the sum of measured species at all sites.
The difference between Gravimetric PM10 mass and sum of
measured species varied between 18 and 43%. Hence, PM10

was included in the PMF concentration matrix. Additional
PMF runs when excluded PM as a species had drawbacks
such as highly mixed factors and physically unrealistic fac-
tors. In comparison, solutions including PM10 as an explicit
species gave superior factor resolution and more realistic
factor composition.

The variables or species to be included in the PMF anal-
ysis were selected using the signal to noise ratio.

The S/N ratio is defined as

(
S

N

)

j
=
∑n

i=1

(
xi j − si j

)2

∑n
i=1

(
si j
)2 . (7)

A variable is called “weak” if the S/N ratio is between 0.2 and
2. Variables with S/N ratio less than 0.2 are denoted as “bad”
variables and are excluded from the analysis.

3.2. Goodness-of-Fit Parameters. The Q values are goodness-
of-fit parameters calculated using (3) and are an assessment
of how well the model fit the input data. Qrobust is calculated
excluding outliers, defined as samples for which the scaled
residual is greater than 4, and the Qtrue is calculated including
all points. Solutions where Qtrue is greater than 1.5 times of
Qrobust indicate that peak events may be disproportionately
influencing the model. The model was run based on a user
specified number of factors and number of iterations. Sub-
sequent to the model run, the model calculated Qrobust values
for each random run are compared to Qtheoretical values to
check the model performance.

Selection of the number of factors or sources is subjective.
The user must select a maximum number of factors that
can adequately describe the total PM10 mass while excluding
factors that do not make physical sense, such as duplicate

factors or factors with unrealistic compositions or contribu-
tions. Knowledge of the possible sources in the area is crucial
as it can provide an answer where factors do not show clear
separation. Evaluating multiple solutions within the range of
Fpeak values that yield an acceptable Q value and assessing
the edge plots are more objective ways to evaluate the model
results

3.3. Fpeak Runs. A pair of factor matrices (G and F) that can
be transformed to another pair of matrices (G∗ and F∗) with
the same Q value is said to be “rotated”. The transformation
takes place as follows:

G∗ = GT , F∗ = T−1F. (8)

The T matrix is a p × p, nonsingular matrix. In PMF, this is
not strictly a rotation but rather a linear transformation of
the G and F matrices. Due to the nonnegativity constraints
in PMF, a rotation (i.e., a specific T matrix) is only possible
if none of the elements of the new matrices are less than zero.
If no rotation is possible, the solution is unique.

In EPA PMF 3.0, the base model run with the lowest
Qrobust is automatically selected by the program as the base
run for Fpeak runs. The user can perform up to five Fpeak

runs by checking the appropriate number of boxes and enter-
ing the desired strength of each Fpeak run. Generally values
between−5 and 5 should be explored first although there are
no limits on the values that can be entered as Fpeak strengths.
Positive Fpeak values sharpen the F matrix and smear the G
matrix, and negative Fpeak values smear the F matrix and
sharpen the G matrix. PMF2 [22] was originally used to
solve PMF model. Multilinear engine version 2 (ME-2) is
the underlying program used to solve the program EPA PMF
3.0 [23]. The Fpeak strengths in ME-2 are not the same as
those in PMF2; values of around 5 times the PMF2 values are
needed to produce comparable results in ME-2. Additionally,
an Fpeak value of 0 is not allowed.

4. Source Identification Using
Positive Matrix Factorization

Sodium (Na), potassium (K), chloride (Cl), calcium (Ca),
and magnesium (Mg) were included in their ionic form, but
their elemental form (measured by ICPAES) was excluded
to avoid double counting of mass [24]. Selenium (Se) and
Vanadium (V) were not detected at Colaba, and Cadmium
(Cd) was not detected at Khar. Table 1 shows the concen-
trations with standard deviations of PM10 and the identified
species at four sites. The number of species used for PMF
modeling ranged from 24 to 26. The number of valid samples
at four sites used for modeling ranged between 83 and 86.
To identify the likely number of factors, 20 random runs
were used and the run with the minimum estimated Q value
was retained [23, 25] for 5–10 factors. Reduction in Q with
increase in number of factors and agreement of estimated
Q with its theoretical value Qtheoretical were used to identify
probable solutions. Estimated Q decreased with increasing
number of factors. Solutions of 6, 7, 8, and 9 factors were
carefully examined. Source categories were recognized from
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Figure 2: Position of original solution using different values of Fpeak for all sites.

the PMF factor profiles based on the abundance of one or
several tracer species. Rotation of the original solution using
different values of Fpeak is shown in Figure 2. Fpeak solutions
gave a higher loading of tracer species in many factors and
resulted in the increase in the number of zeros in the G
or F-matrix, while the Qrobust value increased. The physical
interpretation of factors in terms of likely source categories
was the main criterion used for the choice of base result
or result obtained by Fpeak. The Qtheoretical values for Mahul,
Khar, Dharavi, and Colaba were 2125, 2064, 2158 and 2064
respectively. The minimized Qrobust values for Mahul, Khar,
Dharavi, and Colaba were 4755, 4432, 4636, and 3685,
respectively. Qtrue was found to be within 1.5 times the
Qrobust. Several studies report similar variations in the Qrobust

values as compared to the Qtheoretical values for PMF model
runs. Kim et al. [26] report Qrobust value of 4424 against the
Qtheoretical value of 2369. Average contribution of each factor
to PM10 mass at the monitoring sites is given in Figure 3. The
choice of tracers, for a source category identified in this study,
has been discussed in the description of the factors for each
site. The PMF factor profiles for Mahul, Dharavi, Khar, and
Colaba are given in Figures 4, 5, 6, and 7.

4.1. Description of PMF Sources

4.1.1. Mahul. Optimal number of factors chosen was 9. A
comparison of the daily mean reconstructed PM10 concen-
trations from all sources with the measured PM10 concentra-
tions shows that the identified factors effectively reproduce

the measured mass and account significantly for the variation
in the PM10 concentrations (R2 = 0.87). Species with R2 >
0.9 were Cl−, NH+

4 , Ca2+, Al, Ba, Cr, Cu, Fe, In, Mg, Mn, Pb,
Si, Sr, Ti, and Zn. Species with R2 > 0.8 were OC, SO2−

4 ,
NO−

3 , Na+, Ni, and Se.
The first factor was dominated by SO2−

4 , Al, Mn, K+, Sr,
and V. SO2−

4 and V are tracers for residual oil combustion
[27, 28]. Al, Mn, K, and Sr are tracers for paved road dust.
The contribution of this factor was 26.9% of PM10 mass on
an average at Mahul.

The traffic factor contributes 20% of PM10 mass on an
average at Mahul. The components of this factor were OC,
EC, Al, Fe, and Mg. 62% of total EC, and 35% of total OC
is present in this factor. These species are tracers for traffic
[27, 29].

The coal-fired boiler factor contributed 16.5% of the
PM10 mass on an average. OC, EC, NH+

4 , Ca+, and Se are the
species which dominate this factor. These species are tracers
for coal-fired boiler [27]. The Tata thermal power plant is
located within a distance of about 3 km.

The nitrate factor contributes 15.3% of the PM10 mass on
an average. 70% of nitrate is present in this factor. The major
source of nitrate is the conversion of nitrogen oxides (NOx)
emitted from high-temperature combustion sources making
this category predominantly secondary material.

Cu, In, and Zn are dominant in this factor which explains
10% of the PM10 mass. These are tracers of smelting [30].

PMF model identified 4 more factors. The marine aerosol
factor contributes 3.3% of the PM10 mass. The Ba factor
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Figure 3: Source contribution from four monitoring sites.

contributes 2.9% of the PM10 mass. 63% of total Ba is present
in this factor. Ba is a tracer for oil-fired power plant [27].
The silicon factor contributes 2.7% of the PM10 mass. Bha-
nuprasad et al. [21] also reported a Si factor (20–30%)
from PMF analysis that influenced surface concentrations
of aerosols in the Indian Ocean Experiment (INDOEX),
measured onboard with probable source regions from po-
tential source contribution function (PSCF). The Cr factor
contributes 2.1% of PM10 mass and may be from construc-
tion activities [27].

4.1.2. Khar. The coefficient of determination between daily
mean reconstructed PM10 concentrations from all sources
and the measured PM10 concentrations was 0.87. It shows
that the identified factors effectively reproduce the measured
mass and account significantly for the variation in the PM10

concentrations. Species with R2 > 0.8 were found to be OC,
EC, SO2−

4 , K+, Ca2+, Al, Cu, Cr, Fe, In, Mg, Mn, Pb, Si, Sr, Ti,
V, and Zn. Cd was not detected at Khar. A total of 6 factors
were chosen as the optimal number for the PMF model.

The first factor was dominated by Ca2+, SO2−
4 , and V. V

and SO2−
4 are tracer species for residual oil combustion [27].

Calcium is tracer species for construction [27]. The con-
tribution of this factor was 25.4% of the PM10 mass on an
average at Khar.

The motor vehicles factor contributes 22.8% of total
PM10. 68.4% of total OC and 72.7% of total EC are present in

this factor. EC and OC are tracers for motor vehicles [27, 30].
The sampling site was adjacent to a major road, S.V. Road.

The third factor was dominated by the presence of Na+,
Cl−, and NO−

3 . This factor contributes 19.1% to the PM10

mass on an average. 60.6% of soluble Na and 60.7% of sol-
uble Cl is present in this factor. 67.7% of the total NO−

3 is
also present in this factor. The model could not distinguish
between marine aerosol and Nitrate at Khar.

The next factor was dominated by Cr, Mn, Al, Ti, Sr,
P and Ni. These are tracers for paved road dust [27]. The
contribution of paved road dust was 17.9% to the PM10 mass
on an average at Khar.

Another factor was dominated by Zn and In. Zn is a trac-
er for waste burning [30]. This factor also comprises of Cr, Al
and Mn which are tracers of natural soil [27]. Waste burning
and Natural soil contribute 13% of total PM10.

4.1.3. Dharavi. Optimal number of factors chosen was 7.
The coefficient of determination between daily mean recon-
structed PM10 concentrations from all sources and the mea-
sured PM10 concentrations was 0.6. It shows that the identi-
fied factors reproduced the measured mass reasonably well.
Species with R2 > 0.9 were Cl−, Na+, Al, Ba, Cr, Cu, Fe, In,
Mg, Mn, Pb, Si, Sr, Ti, and Zn. Species with R2 lying between
0.8 and 0.9 were SO2−

4 , NO−
3 , NH+

4 , K+, Ca2+, Cd and Ni.
About 30% of Ca2+ and 23% of Sr dominated the first

factor. Ca2+ and Sr are tracers for construction work [27].
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Figure 4: PMF factor Profile for Mahul.

29% of Cl− and 22% of Mg2+ were also present in this factor,
which are tracers for Natural soil [27]. The Model could
not distinguish between these sources. The contribution of
construction dust and natural dust was 27% of PM10 mass
on an average at Dharavi and was found to be the largest
contributor to PM10 at this site.

The second factor was dominated by Zn, OC, EC, and
SO2−

4 . These species are tracers for motor vehicles [27]. In
India Pb free gasoline is being used and PB does come from
motor vehicles. About 60% of total Pb, 43.1% of total In and
33.3% of Cd is also present in this factor which are tracer
species for Smelting works [30]. The contribution of this
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Figure 5: PMF factor profile for Khar.

factor was 25.4% of PM10 mass and was the second largest
contributor to PM10 at this site.

The third factor was dominated by the presence of nitrate
and its contribution was 16% to the PM10 mass on an average
at Dharavi. 64% of total nitrate was observed in this factor.

The fourth factor was dominated by 32.4% of Ca2+, 30%
of Cl− and 29% of OC. These are tracers for paved road dust.
42% of total K+ was also present in this factor which is a
tracer for biomass burning [21]. The total contribution of
this factor was 15.3% of the total PM10 mass.

Apart from above four factors, PMF model identified 3
more factors. A silicon factor contributing 8.2% of total PM10

mass was also resolved by the model. Sulphate factor was
dominated by the presence of sulphate and ammonium and
contributed 6.8% of total PM10 mass. The presence of several
small-scale industries in the vicinity of Dharavi validates the
high sulphate contribution. The seventh factor contributed
only 1.1% of total PM10 mass. This factor was composed
mainly of Se, Al, Mn, Ti, Fe, and Ba which are tracers of coal

fired boiler. The presence of several unauthorized small-scale
industries within Dharavi validates this factor.

4.1.4. Colaba. Optimal number of factors chosen was 9. A
comparison of the daily mean reconstructed PM10 concen-
trations from all sources with the measured PM10 concentra-
tions shows that the identified factors effectively reproduce
the measured mass and account significantly for the variation
in the PM10 concentrations (R2 = 0.82). It shows that
the identified factors reproduced the measured mass well
accounting reasonably for the variation in the PM10 concen-
trations. Species with R2 > 0.9 were SO2−

4 , Ca2+, Al, Ba, Cr,
Cu, Fe, In, Mg2+, Mn, Pb, Si, Sr, Ti, and Zn. Species with R2

lying between 0.7 and 0.9 were NO−
3 , Ni and Na+. Selenium

(Se) and Vanadium (V) were not detected at Colaba.
The first factor was dominated by Na+, Cl−, SO2−

4 , NH+
4 ,

K+, and EC. 39% of Na+ and 51% of Cl− representing the
marine aerosol was present in this factor. Colaba is a site
surrounded on three sides by sea. In urban areas, the possible
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Figure 6: PMF factor profile for Dharavi.

sources of secondary sulphate include fuel combustion in
vehicles and coal-fired power plants. Marine aerosol is also a
source for sulphate [27]. 39.7% of K+ which is a tracer species
for wood burning was also present [31]. In Colaba there
are several bakeries that use wood as the fuel, and may be a
possible source for K+. The PMF model could not resolve the
three sources, namely, marine aerosol, secondary aerosol and
wood burning. The average PM10 mass contribution of this
factor was 24.3% at Colaba.

The important components of second factor were EC
(30%), OC (33%), Pb (90%), Cu 46(%), Mn (33%), and
Al (33%). These species are tracers for motor vehicles
[27]. Apart from these, Ti (44%) and Cd (36%) were also

observed. Cu, Pb, Cd, and Ti are tracers of smelting [27].
The contribution of this factor was 21.9% of PM10 mass on
an average at Colaba. The PMF analysis does not distinguish
very well between these two sources.

The third factor was dominated by the presence of Mg2+

(70%), Sr (66%), Mn (31%), Fe (31%), and Al (30%). This
factor contributed 18.7% to the PM10 mass on an average at
Colaba and can be attributed to natural soil as Mg, Sr, Mn,
Fe, and Al are considered its tracers [27].

About 17.6% of PM10 mass at Colaba comprised of
53.7% of NO−

3 and 31.3% of Ni in the fourth factor. Ni is
a tracer of burning of residual fuel oil [32].
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Figure 7: PMF factor profile for Colaba.
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The fifth factor had 81.3% of Ca2+ which contributed
5.8% of PM10 mass at Colaba. Calcium is a tracer for con-
struction dust [27]. The next factor accounted for 4.4% of
PM10 mass with 86% of Si presence. The next factor
accounted for 2.8% of PM10 mass and comprised of Zn, In,
Cu, OC, and EC. Zn, In, Cu, OC, and EC are tracers for
waste burning [30]. The model identified two more factors
which accounted for 2.5 and 2% of PM10 mass, respectively.
Cr (77.5%) dominated the first factor and was identified
due to welding activities in nearby docks present in this
area. The second factor was dominated by Ba (96%) and
can be attributed to oil fired power plant [27]. Some major
refineries are located at a distance of about 13 km and pos-
sible source of contribution.

5. Conclusions

EPA PMF3.0 was used to analyze the elemental data obtained
from four sites in Mumbai. The number of sources varied
between 6 and 9. The major contributors of PM10 at the
industrial site Mahul were residual oil combustion and paved
road dust (26.9%), traffic (20.3%), coal-fired boiler (16.5%),
nitrate (15.3%), and smelting (10%). Khar, a residential
area of upper income group received contributions from
residual oil combustion and construction (25.4%), motor
vehicles (22.8%), marine aerosol and nitrate (19.1%), paved
road dust (17.9), and waste burning and natural soil (13%).
At Dharavi, Asia’s largest slum conglomerate, major air
pollution sources were identified as construction and natural
dust (27%), motor vehicles and smelting work (25.4%),
nitrate (16%), and biomass burning and paved road dust
(15.3%). The major sources at the background site, Colaba,
were marine aerosol, wood burning and ammonium sul-
phate (24.3%), motor vehicles and smelting work (21.9%),
natural soil (18.7%), and nitrate and oil burning (17.6%).
Findings indicate that most of the sites were dominated
by local sources based on activities in the vicinity of the
sampling locations. Overall action plan preparation will need
to concentrate on local sources as priority, as reduction of
these source strengths will give maximum benefit in terms of
lower exposure from air pollution.
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